DocumentCode :
602628
Title :
Energy-efficient interconnect via Router Parking
Author :
Samih, A. ; Ren Wang ; Krishna, A. ; Maciocco, C. ; Tai, Chin-Ming ; Solihin, Y.
Author_Institution :
Intel Archit. Group, Intel Corp., Austin, TX, USA
fYear :
2013
fDate :
23-27 Feb. 2013
Firstpage :
508
Lastpage :
519
Abstract :
The increase in on-chip core counts in Chip Multi Processors (CMPs) has led to the adoption of interconnects such as Mesh and Torus, which consume an increasing fraction of the chip power. Moreover, as technology and voltage continue to scale down, static power consumes a larger fraction of the total power; reducing it is increasingly important for energy proportional computing. Currently, processor designers strive to send under-utilized cores into deep sleep states in order to reduce idling power and improve overall energy efficiency. However, even in state-of-the-art CMP designs, when a core goes to sleep the router attached to it remains active in order to continue packet forwarding. In this paper, we propose Router Parking - selectively power-gating routers attached to parked cores. Router Parking ensures that network connectivity is maintained, and limits the average interconnect latency impact of packet detouring around parked routers. We present two Router Parking algorithms - an aggressive approach to park as many routers as possible, and a conservative approach that parks a limited set of routers in order to keep the impact on latency increase minimal. Further, we propose an adaptive policy to choose between the two algorithms at run-time. We evaluate our algorithms using both synthetic traffic as well as real workloads taken from SPEC CPU2006 and PARSEC 2.1 benchmark suites. Our evaluation results show that Router Parking can achieve significant savings in the total interconnect energy (average of 32%, 40% and 41% for the synthetic, SPEC CPU2006, and PARSEC 2.1 workloads, respectively).
Keywords :
benchmark testing; energy conservation; integrated circuit design; microprocessor chips; multiprocessor interconnection networks; network routing; power aware computing; CMP; PARSEC 2.1 benchmark suites; SPEC CPU2006 benchmark suites; adaptive policy; chip multiprocessors; chip power; continue packet forwarding; deep sleep states; energy efficiency; energy proportional computing; energy-efficient interconnect; network connectivity; on-chip core counts; packet detouring; power-gating routers; real workloads; router parking algorithms; state-of-the-art CMP design; static power consumption; synthetic traffic; voltage scale; Fabrics; Frequency modulation; Network topology; Partitioning algorithms; Routing; System recovery; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium on
Conference_Location :
Shenzhen
ISSN :
1530-0897
Print_ISBN :
978-1-4673-5585-8
Type :
conf
DOI :
10.1109/HPCA.2013.6522345
Filename :
6522345
Link To Document :
بازگشت