DocumentCode :
603508
Title :
Tense Operators and Dynamic De Morgan Algebras
Author :
Chajda, I. ; Paseka, J.
Author_Institution :
Dept. of Algebra & Geometry, Palacky Univ. Olomouc, Olomouc, Czech Republic
fYear :
2013
fDate :
22-24 May 2013
Firstpage :
219
Lastpage :
224
Abstract :
To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.
Keywords :
algebra; formal logic; De Morgan poset; double negation law; dynamic De Morgan algebra; tense operator; universal quantifier; Algebra; Educational institutions; Electronic mail; Geometry; Lattices; Quantum mechanics; De Morgan lattice; De Morgan poset; dynamic De Morgan algebra; tense operators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic (ISMVL), 2013 IEEE 43rd International Symposium on
Conference_Location :
Toyama
ISSN :
0195-623X
Print_ISBN :
978-1-4673-6067-8
Electronic_ISBN :
0195-623X
Type :
conf
DOI :
10.1109/ISMVL.2013.56
Filename :
6524667
Link To Document :
بازگشت