• DocumentCode
    607679
  • Title

    Spectral learning of mixtures of Hidden Markov Models

  • Author

    Subakan, Yusuf Cem ; Celiktutan, Oya ; Cemgil, A.T. ; Sankur, B.

  • Author_Institution
    Elektrik-Elektron. Muhendisligi, Bogazici Univ., Bebek, Turkey
  • fYear
    2013
  • fDate
    24-26 April 2013
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    In this work, we propose a novel approach for clustering Hidden Markov Models (HMMs). We use spectral learning for latent variable models to learn HMM parameters in each cluster. Unlike conventional expectation-maximization algorithms, spectral learning enables us to do parameter estimation in latent variable models without iterating, in local optima free fashion. For this reason, our algorithm is computationally cheaper than clustering HMMs with conventional approaches such as EM.
  • Keywords
    hidden Markov models; learning (artificial intelligence); parameter estimation; pattern clustering; HMM; conventional expectation-maximization algorithms; hidden Markov models; latent variable models; local optima free fashion; mixture spectral learning; parameter estimation; Clustering algorithms; Computational modeling; Hidden Markov models; Information processing; Machine learning algorithms; Markov processes; Signal processing algorithms; Hidden Markov Model; Mixture Model; Spectral Learning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing and Communications Applications Conference (SIU), 2013 21st
  • Conference_Location
    Haspolat
  • Print_ISBN
    978-1-4673-5562-9
  • Electronic_ISBN
    978-1-4673-5561-2
  • Type

    conf

  • DOI
    10.1109/SIU.2013.6531340
  • Filename
    6531340