DocumentCode :
609348
Title :
Determination of submerged arc welding process parameters using Taguchi method and regression analysis
Author :
Gowthaman, K. ; Saiganesh, J. ; Rajamanikam, C.
Author_Institution :
L&T Integrated Eng. Services Chennai, Chennai, India
fYear :
2013
fDate :
10-12 April 2013
Firstpage :
842
Lastpage :
847
Abstract :
This paper details the application of Taguchi technique and regression analysis to determine the optimal process parameters for submerged arc welding (SAW). The planned experiments are conducted in the semiautomatic submerged arc welding machine and the signal-to-noise ratios are computed to determine the optimum parameters. The percentage contribution of each factor is validated by analysis of variance (ANOVA) technique. Multiple regression analysis (MRA) is conducted using statistical package for social science (SPSS) software and the mathematical model is built to predict the bead geometry for any given welding conditions.
Keywords :
Taguchi methods; arc welding; geometry; regression analysis; ANOVA technique; MRA; SAW; SPSS; Taguchi method; analysis of variance technique; bead geometry; mathematical model; multiple regression analysis; optimal process parameters; semiautomatic submerged arc welding machine; signal-to-noise ratios; statistical package for social science software; Analysis of variance; Electrodes; Geometry; Optimization; Regression analysis; Surface acoustic waves; Welding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Energy Efficient Technologies for Sustainability (ICEETS), 2013 International Conference on
Conference_Location :
Nagercoil
Print_ISBN :
978-1-4673-6149-1
Type :
conf
DOI :
10.1109/ICEETS.2013.6533495
Filename :
6533495
Link To Document :
بازگشت