• DocumentCode
    61240
  • Title

    Spectrum Sensing Using Correlated Receiving Multiple Antennas in Cognitive Radios

  • Author

    Sedighi, Saeid ; Taherpour, Abbas ; Sala, Josep

  • Author_Institution
    Dept. of Electrical Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran
  • Volume
    12
  • Issue
    11
  • fYear
    2013
  • fDate
    Nov-13
  • Firstpage
    5754
  • Lastpage
    5766
  • Abstract
    In this paper, we address the problem of multiantenna spectrum sensing in Cognitive Radios (CRs) by considering the correlation between the received channels at different antennas. First, we derive the optimum genie-aided detector which assumes perfect knowledge of the antenna correlation coefficients, Primary User (PU) signal power and noise variance. This is used as a benchmark for comparing with more practical detectors when some or all of these parameters are unknown to the Secondary User (SU). Two scenarios are considered: 1) the antenna correlation coefficients and PU signal power are unknown to the SU; 2) the antenna correlation coefficients, PU signal power and noise variance are unknown to the SU. To derive sub-optimum detectors for these two scenarios, we apply the Rao test, an asymptotically equivalent test to the Generalized Likelihood Ratio Test (GLRT) that does not require the Maximum Likelihood (ML) estimates of unknown parameters. Additionally, we calculate analytical approximations to the detection and false-alarm probabilities of the proposed detectors and verify them with Monte-Carlo simulations. The simulation results show that these new detectors outperform several recently proposed detectors for CR using multiple antennas.
  • Keywords
    Correlation; Detectors; Maximum likelihood estimation; Noise; Receiving antennas; Cognitive radio; Fisher information matrix; Rao test; antenna array; antenna correlations; multiple antennas; noise variance mismatch; spectrum sensing;
  • fLanguage
    English
  • Journal_Title
    Wireless Communications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1536-1276
  • Type

    jour

  • DOI
    10.1109/TWC.2013.100213.130158
  • Filename
    6644232