DocumentCode :
613274
Title :
Learning system for adapting users with user´s state classification by vital sensing
Author :
Nakase, Junya ; Moriyama, Koichi ; Kiyokawa, Kiyoshi ; Numao, Masayuki ; Oyama, Masashi ; Kurihara, Seiji
Author_Institution :
Grad. Sch. of Inf. Sci. & Technol., Osaka Univ., Suita, Japan
fYear :
2013
fDate :
18-20 March 2013
Firstpage :
1
Lastpage :
2
Abstract :
In ambient information systems, not only extracting human behavior with a sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper, we propose a reinforcement learning methodology for acquiring suitable interaction for each person´s daily behavior. This time, we used vital sensors to detect and classify a user´s condition. In an experiment, we show the feasibility of the proposed methodology.
Keywords :
ergonomics; information systems; learning (artificial intelligence); pattern classification; adaptive autonomous interaction; ambient information systems; human behavior; learning system; reinforcement learning methodology; sensor network; user state classification; vital sensing; Educational institutions; Hafnium; Information systems; Learning (artificial intelligence); Sensors; Sleep; ambient information system; interaction sequence; profit sharing; reinforcement learning; vital sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Virtual Reality (VR), 2013 IEEE
Conference_Location :
Lake Buena Vista, FL
ISSN :
1087-8270
Print_ISBN :
978-1-4673-4795-2
Type :
conf
DOI :
10.1109/VR.2013.6549438
Filename :
6549438
Link To Document :
بازگشت