• DocumentCode
    613274
  • Title

    Learning system for adapting users with user´s state classification by vital sensing

  • Author

    Nakase, Junya ; Moriyama, Koichi ; Kiyokawa, Kiyoshi ; Numao, Masayuki ; Oyama, Masashi ; Kurihara, Seiji

  • Author_Institution
    Grad. Sch. of Inf. Sci. & Technol., Osaka Univ., Suita, Japan
  • fYear
    2013
  • fDate
    18-20 March 2013
  • Firstpage
    1
  • Lastpage
    2
  • Abstract
    In ambient information systems, not only extracting human behavior with a sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper, we propose a reinforcement learning methodology for acquiring suitable interaction for each person´s daily behavior. This time, we used vital sensors to detect and classify a user´s condition. In an experiment, we show the feasibility of the proposed methodology.
  • Keywords
    ergonomics; information systems; learning (artificial intelligence); pattern classification; adaptive autonomous interaction; ambient information systems; human behavior; learning system; reinforcement learning methodology; sensor network; user state classification; vital sensing; Educational institutions; Hafnium; Information systems; Learning (artificial intelligence); Sensors; Sleep; ambient information system; interaction sequence; profit sharing; reinforcement learning; vital sensing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Virtual Reality (VR), 2013 IEEE
  • Conference_Location
    Lake Buena Vista, FL
  • ISSN
    1087-8270
  • Print_ISBN
    978-1-4673-4795-2
  • Type

    conf

  • DOI
    10.1109/VR.2013.6549438
  • Filename
    6549438