DocumentCode :
617191
Title :
Parameter identification of a lumped parameter thermal model for a permanent magnet synchronous machine
Author :
Guemo, Gilles Guedia ; Chantrenne, Patrice ; Jac, Julien
Author_Institution :
INSA de LYON, Univ. de Lyon, Villeurbanne, France
fYear :
2013
fDate :
12-15 May 2013
Firstpage :
1316
Lastpage :
1320
Abstract :
In the thermal modeling of electric machines by lumped parameters, an important step is the tuning of influential poorly known parameters to calibrate the model. The use of Inverse methods based on the minimization of residuals between measured and calculated temperatures is therefore of great help. In this paper, the Gauss-Newton (GN) method, the Levenberg-Marquardt (LM) method and the Genetic Algorithms (GA) method are used to solve this optimization problem in order to identify 10 parameters of a lumped parameter thermal model for a permanent magnet synchronous machine (PMSM).
Keywords :
genetic algorithms; inverse transforms; lumped parameter networks; minimisation; parameter estimation; permanent magnet machines; synchronous machines; GA method; GN method; Gauss-Newton method; LM method; Levenberg-Marquardt method; PMSM; electric machines; genetic algorithms; inverse methods; lumped parameter thermal model; minimization; optimization problem; parameter identification; permanent magnet synchronous machine; Equations; Genetic algorithms; Mathematical model; Sociology; Statistics; Stator cores; Temperature measurement; Gauss-Newton method; Genetic algorithms; Levenberg-Marquardt method; electrical machine; inverse method; parameter identification; thermal modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electric Machines & Drives Conference (IEMDC), 2013 IEEE International
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4673-4975-8
Electronic_ISBN :
978-1-4673-4973-4
Type :
conf
DOI :
10.1109/IEMDC.2013.6556329
Filename :
6556329
Link To Document :
بازگشت