• DocumentCode
    617191
  • Title

    Parameter identification of a lumped parameter thermal model for a permanent magnet synchronous machine

  • Author

    Guemo, Gilles Guedia ; Chantrenne, Patrice ; Jac, Julien

  • Author_Institution
    INSA de LYON, Univ. de Lyon, Villeurbanne, France
  • fYear
    2013
  • fDate
    12-15 May 2013
  • Firstpage
    1316
  • Lastpage
    1320
  • Abstract
    In the thermal modeling of electric machines by lumped parameters, an important step is the tuning of influential poorly known parameters to calibrate the model. The use of Inverse methods based on the minimization of residuals between measured and calculated temperatures is therefore of great help. In this paper, the Gauss-Newton (GN) method, the Levenberg-Marquardt (LM) method and the Genetic Algorithms (GA) method are used to solve this optimization problem in order to identify 10 parameters of a lumped parameter thermal model for a permanent magnet synchronous machine (PMSM).
  • Keywords
    genetic algorithms; inverse transforms; lumped parameter networks; minimisation; parameter estimation; permanent magnet machines; synchronous machines; GA method; GN method; Gauss-Newton method; LM method; Levenberg-Marquardt method; PMSM; electric machines; genetic algorithms; inverse methods; lumped parameter thermal model; minimization; optimization problem; parameter identification; permanent magnet synchronous machine; Equations; Genetic algorithms; Mathematical model; Sociology; Statistics; Stator cores; Temperature measurement; Gauss-Newton method; Genetic algorithms; Levenberg-Marquardt method; electrical machine; inverse method; parameter identification; thermal modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electric Machines & Drives Conference (IEMDC), 2013 IEEE International
  • Conference_Location
    Chicago, IL
  • Print_ISBN
    978-1-4673-4975-8
  • Electronic_ISBN
    978-1-4673-4973-4
  • Type

    conf

  • DOI
    10.1109/IEMDC.2013.6556329
  • Filename
    6556329