• DocumentCode
    617361
  • Title

    Human liver multiphysics modeling for 4D dosimetry during hadrontherapy

  • Author

    Manescu, Petru ; Ladjal, Hamid ; Azencot, J. ; Beuve, Michael ; Shariat, Behzad

  • Author_Institution
    LIRIS, Univ. Claude Bernard Lyon 1, Lyon, France
  • fYear
    2013
  • fDate
    7-11 April 2013
  • Firstpage
    472
  • Lastpage
    475
  • Abstract
    Organ motion, especially respiratory motion, is a technical challenge to hadrontherapy planning and dosimetry. This motion induces the displacement and the deformation of the organs tissues along the radiation beam path which need to be taken into account when computing dose distribution during the treatment. In this paper we present an original approach of virtual patient modeling for 4D radiation therapy simulations. As opposed to classical image-based models, where the necessary information is distributed over a rigid structured grid of voxels, we represent the human anatomy with a deformable grid of tetrahedra where the mass density is mapped to the vertices of the grid. In this way, we can simulate within the same structure organ motion, mass density variations and dose distribution without having to perform voxel tissue tracking.
  • Keywords
    biological tissues; biomechanics; computerised tomography; dosimetry; image motion analysis; liver; medical image processing; pneumodynamics; radiation therapy; 4D dosimetry; 4D radiation therapy simulation; 4D-CT; classical image-based model; deformable grid; dose distribution computing; hadrontherapy dosimetry; hadrontherapy planning; human anatomy; human liver multiphysics modeling; mass density variation; organ tissue deformation; organ tissue displacement; radiation beam path; respiratory motion; rigid structured voxel grid; structure organ motion; tetrahedral grid; virtual patient modeling; Biological system modeling; Computed tomography; Deformable models; Dosimetry; Liver; Tumors; 4D-CT; Hadrontherapy; dosimetry; organ motion; tetrahedral grid;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
  • Conference_Location
    San Francisco, CA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4673-6456-0
  • Type

    conf

  • DOI
    10.1109/ISBI.2013.6556514
  • Filename
    6556514