• DocumentCode
    617481
  • Title

    Sure-based parameter selection for parallel MRI reconstruction using GRAPPA and sparsity

  • Author

    Weller, Daniel S. ; Ramani, S. ; Nielsen, Jon-Fredrik ; Fessler, Jeffrey A.

  • Author_Institution
    EECS Dept., Univ. of Michigan, Ann Arbor, MI, USA
  • fYear
    2013
  • fDate
    7-11 April 2013
  • Firstpage
    954
  • Lastpage
    957
  • Abstract
    New methods have been developed for parallel MRI reconstruction combining GRAPPA and sparsity. One impediment to the practical application of such methods is selecting a regularization parameter that acceptably balances the contributions of GRAPPA and sparsity. We propose a broadly applicable Monte-Carlo-based approximation to Stein´s unbiased risk estimate (SURE) for a suitable weighted mean-squared error (WMSE) metric. Applying this approximation to predict the WMSE-optimal tuning parameter for sparsity-based reconstruction, we are able to tune our parameter to achieve nearly MSE-optimal performance. In our simulations, we vary the noise level in the simulated data and use our Monte-Carlo method to tune the reconstruction to the noise level automatically.
  • Keywords
    Monte Carlo methods; biomedical MRI; image denoising; image reconstruction; mean square error methods; medical image processing; GRAPPA; Monte Carlo method; SURE-based parameter selection; Stein unbiased risk estimate; WMSE metric; WMSE optimal tuning parameter; data simulation; magnetic resonance imaging; noise level; parallel MRI reconstruction; regularization parameter selection; sparsity-based reconstruction; weighted mean-squared error; Coils; Image reconstruction; Magnetic resonance imaging; Monte Carlo methods; Noise; Tuning; MRI; Monte-Carlo methods; Parallel imaging; Stein´s unbiased risk estimate; regularization parameter selection; sparsity;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
  • Conference_Location
    San Francisco, CA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4673-6456-0
  • Type

    conf

  • DOI
    10.1109/ISBI.2013.6556634
  • Filename
    6556634