DocumentCode :
617519
Title :
Automatic cardiac RV segmentation using semantic information with graph cuts
Author :
Mahapatra, D. ; Buhmann, J.M.
Author_Institution :
Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
fYear :
2013
fDate :
7-11 April 2013
Firstpage :
1106
Lastpage :
1109
Abstract :
We propose a fully automatic method for cardiac right ventricle (RV) segmentation using image features, context information and semantic knowledge using graph cuts. A region of interest (ROI) is first identified and pixels within it are assigned labels (RV or background) using Random forest (RF) classifiers and graph cuts. Semantic information obtained from the trained RF classifiers is used to formulate the smoothness cost. Use of context and semantic information contributes to higher segmentation accuracy than competing methods used on the MICCAI 2012 RV segmentation dataset.
Keywords :
biomedical MRI; cardiology; feature extraction; graphs; image classification; image segmentation; medical image processing; MICCAI 2012 RV segmentation dataset; automatic cardiac right ventricle segmentation; context information; graph cuts; image features; magnetic resonance imaging; random forest classifiers; region-of-interest; semantic information; semantic knowledge; Accuracy; Context; High definition video; Image segmentation; Manuals; Radio frequency; Semantics; Automatic segmentation; MRI; Right ventricle; graph cut; semantic information;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
Conference_Location :
San Francisco, CA
ISSN :
1945-7928
Print_ISBN :
978-1-4673-6456-0
Type :
conf
DOI :
10.1109/ISBI.2013.6556672
Filename :
6556672
Link To Document :
بازگشت