• DocumentCode
    62214
  • Title

    Data-Driven Reference Trajectory Tracking Algorithm and Experimental Validation

  • Author

    Radac, Mircea-Bogdan ; Precup, Radu-Emil ; Petriu, Emil M. ; Preitl, Stefan ; Dragos, Claudia-Adina

  • Author_Institution
    Dept. of Autom. & Appl. Inf., Politeh. Univ. of Timisoara, Timisoara, Romania
  • Volume
    9
  • Issue
    4
  • fYear
    2013
  • fDate
    Nov. 2013
  • Firstpage
    2327
  • Lastpage
    2336
  • Abstract
    This paper proposes a data-driven algorithm that solves a reference trajectory tracking problem defined as an optimization problem. The new data-driven reference trajectory tracking algorithm (DDRTTA) solves the optimization problem in the framework of iterative learning control (ILC). The DDRTTA updates the reference input sequence using an experiment-based approach which accounts for operational constraints and employs an interior point barrier algorithm. Therefore the DDRTTA combines the advantages of data-driven control and ILC. A case study which deals with the angular position control of a nonlinear servo system is included to validate the DDRTTA by experimental and simulation results.
  • Keywords
    iterative methods; learning systems; nonlinear control systems; optimisation; servomechanisms; trajectory control; DDRTTA; ILC; angular position control; data-driven reference trajectory tracking algorithm; experimental validation; iterative learning control; nonlinear servo system; optimization problem; Algorithm design and analysis; Data models; Iterative methods; Optimization; Tracking; Trajectory; Data-driven reference trajectory tracking; experimental results; iterative feedback tuning; iterative learning control; lifted form representation;
  • fLanguage
    English
  • Journal_Title
    Industrial Informatics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1551-3203
  • Type

    jour

  • DOI
    10.1109/TII.2012.2220973
  • Filename
    6339058