DocumentCode :
62636
Title :
Adaptive weighted real-time compressive tracking
Author :
Jianzhang Zhu ; Yue Ma ; Qianqing Qin ; Chen Zheng ; Yijun Hu
Author_Institution :
Sch. of Math. & Stat., Wuhan Univ., Wuhan, China
Volume :
8
Issue :
6
fYear :
2014
fDate :
12 2014
Firstpage :
740
Lastpage :
752
Abstract :
Many tracking methods often suffer from the drift problems caused by appearance change. Therefore developing a robust online tracker is still a challenging test. Recently, a simple yet effective and efficient tracking algorithm has been proposed by compressive tracking (CT) paradigm to alleviate the drift to some degree. The CT tracker introduced an appearance model based on features extracted from the multi-scale image feature space in the compressed domain. However, the CT tracker may detect the positive sample that is less important because it does not discriminatively consider the sample importance in its learning procedure. In this study, the authors integrate the sample importance into the CT tracker online learning procedure. They also add an efficient feature select method which can choose the most discriminative power weak classifier and employ the co-training criterion into CT tracker to improve the tracking performance. Experiments show that the proposed tracker demonstrates the superior performance in robustness and efficiency than other state-of-the-art trackers.
Keywords :
feature extraction; learning (artificial intelligence); object tracking; CT tracker online learning procedure; adaptive weighted real-time compressive tracking; appearance change; compressed domain; compressive tracking paradigm; drift problems; extracted features; multiscale image feature space; robust online tracker; tracking methods;
fLanguage :
English
Journal_Title :
Computer Vision, IET
Publisher :
iet
ISSN :
1751-9632
Type :
jour
DOI :
10.1049/iet-cvi.2013.0255
Filename :
6969227
Link To Document :
بازگشت