• DocumentCode
    62835
  • Title

    A New Method for Maximum Likelihood Parameter Estimation of Gamma-Gamma Distribution

  • Author

    Kazeminia, M. ; Mehrjoo, Mehri

  • Author_Institution
    Telecommun. Dept., Univ. of Sistan & Baluchestan, Zahedan, Iran
  • Volume
    31
  • Issue
    9
  • fYear
    2013
  • fDate
    1-May-13
  • Firstpage
    1347
  • Lastpage
    1353
  • Abstract
    We propose a method to obtain the maximum likelihood (ML) parameter estimation of the Gamma-Gamma (Γ-Γ) distribution representing the free space optical (FSO) channel irradiance fluctuations. The proposed method is based on the expectation maximization (EM) algorithm and the generalized Newton method using a non-quadratic approximation. The numerical results show that, for all turbulence conditions, the proposed ML method is more accurate than the fractional moments (FMOM) method and the numerical ML method (two dimensional numerical maximization of log-likelihood function using the Nelder-Mead algorithm). Moreover, the proposed ML is a fast and stable iterative method, because the iterations always converge to the global optimum with high convergence rate.
  • Keywords
    Newton method; expectation-maximisation algorithm; optical communication; turbulence; EM algorithm; FMOM method; FSO communication; Nelder-Mead algorithm; Newton method; expectation maximization algorithm; fractional moment method; free space optical channel irradiance fluctuations; gamma-gamma distribution; iterative method; log-likelihood function; maximum likelihood parameter estimation; nonquadratic approximation; numerical ML method; turbulence condition; Channel estimation; Fluctuations; Maximum likelihood estimation; Newton method; Parameter estimation; Shape; Expectation maximization algorithm; free space optical communications; generalized Newton method; maximum likelihood parameter estimation;
  • fLanguage
    English
  • Journal_Title
    Lightwave Technology, Journal of
  • Publisher
    ieee
  • ISSN
    0733-8724
  • Type

    jour

  • DOI
    10.1109/JLT.2013.2246858
  • Filename
    6466347