DocumentCode :
638627
Title :
A novel Multi-Bernoulli filter for joint target detection and tracking
Author :
Cuiyun Li ; Hongbing Ji ; Qibing Zou ; Sujun Wang
Author_Institution :
Sch. of Electron. Eng., Xidian Univ., Xi´an, China
fYear :
2013
fDate :
27-29 April 2013
Firstpage :
176
Lastpage :
180
Abstract :
Aiming at the detecting and tracking of the moving dim targets from image observations with low signal-to-noise ratio(SNR), this paper puts forward a new track-before-detect algorithm based on Gaussian particle filter implementation of Multi-Bernoulli filter (GPF-MB-TBD). GPF-MB-TBD can greatly reduce the requirement for storing, and improve the performance of tracking than the sequential Monte Carlo implementation of Multi-Bernoulli filter(SMC-MB-TBD). Simulation results show that this novel algorithm is suitable for detection and tracking multiple targets from image observations.
Keywords :
Gaussian processes; object detection; particle filtering (numerical methods); target tracking; GPF-MB-TBD; Gaussian particle filter implementation; SNR; image observations; multiBernoulli filter; signal-to-noise ratio; target detection; target tracking; track-before-detect algorithm; Gaussian Particle Filter; Multi-Bernoulli Filter; Random Finite sets; Track-before-detect;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Information and Communications Technologies (IETICT 2013), IET International Conference on
Conference_Location :
Beijing
Electronic_ISBN :
978-1-84919-653-6
Type :
conf
DOI :
10.1049/cp.2013.0052
Filename :
6617495
Link To Document :
بازگشت