Title :
Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems
Author :
Won Hwa Kim ; Chung, Moo K. ; Singh, V.
Author_Institution :
Dept. of Comput. Sci., Univ. of Wisconsin, Madison, WI, USA
Abstract :
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape´s local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Keywords :
computer vision; feature extraction; image representation; image resolution; image segmentation; mesh generation; wavelet transforms; 3D shape meshes; 3D shape segmentation; dual domain representation; harmonic analysis; mesh segmentation; multiresolution shape analysis; nonEuclidean wavelets; nonuniform topology; surface alignment problem; uniqueness theorem; Benchmark testing; Kernel; Shape; Surface waves; Wavelet analysis; Wavelet transforms;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
Conference_Location :
Portland, OR
DOI :
10.1109/CVPR.2013.278