DocumentCode :
639925
Title :
Information geometry in mathematical finance: Model risk, worst and almost worst scenarios
Author :
Breuer, Thomas ; Csiszar, Ivan
Author_Institution :
PPE Res. Centre, FH Vorarlberg, Dornbirn, Austria
fYear :
2013
fDate :
7-12 July 2013
Firstpage :
404
Lastpage :
408
Abstract :
The mathematical problem addressed is minimising the expectation of a random variable over a set of feasible distributions P ϵ Γ, given as a level set of a convex integral functional. As special cases, Γ may be an f-divergence or f-divergence ball or a Bregman ball around a default distribution. Our approach is motivated by geometric intuition and relies upon the theory of minimising convex integral functionals subject to moment constraints. One main result is that all “almost minimisers” P ϵ Γ belong to a small Bregman ball around a specified distribution or defective distribution P, equal to the strict minimiser if that exists but well defined also otherwise.
Keywords :
finance; geometry; risk analysis; Bregman ball; I-divergence; almost worst scenarios; convex integral functional; convex integral functionals; f-divergence ball; geometric intuition; information geometry; mathematical finance; model risk; moment constraints; Convex functions; Educational institutions; Finance; Information theory; Mathematical model; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
Conference_Location :
Istanbul
ISSN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2013.6620257
Filename :
6620257
Link To Document :
بازگشت