DocumentCode
640912
Title
Extension of iVAT to asymmetric matrices
Author
Havens, Timothy C. ; Bezdek, James C. ; Leckie, Christopher ; Palaniswami, Marimuthu
Author_Institution
Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI, USA
fYear
2013
fDate
7-10 July 2013
Firstpage
1
Lastpage
6
Abstract
The iVAT algorithm reorders (symmetric) dissimilarity data so that an image of the data may reveal cluster substructure. This paper extends the method so that it can handle asymmetric dissimilarity data. The extension is based on replacing the asymmetric input data with its unique least-squared error approximation by a symmetric matrix. Examples are given to illustrate the new method, called asymmetric iVAT (asiVAT).
Keywords
data handling; least squares approximations; matrix algebra; asiVAT; asymmetric dissimilarity data handling; asymmetric iVAT; asymmetric matrices; cluster substructure; iVAT algorithm; least-squared error approximation; symmetric data; symmetric matrix; Clustering algorithms; Contamination; Iris; Symmetric matrices; Tin; Vectors; Visualization; VAT; asymmetric matrices; iVAT; reordered dissimilarity images; visualization;
fLanguage
English
Publisher
ieee
Conference_Titel
Fuzzy Systems (FUZZ), 2013 IEEE International Conference on
Conference_Location
Hyderabad
ISSN
1098-7584
Print_ISBN
978-1-4799-0020-6
Type
conf
DOI
10.1109/FUZZ-IEEE.2013.6622300
Filename
6622300
Link To Document