Title :
Imputing missing values from low quality data by NIP tool
Author :
Martinez, Ricardo ; Cadenas, Jose ; Garrido, M. Carmen ; Martinez, A.
Author_Institution :
Dipt. Ing. de la Informacion y las Comun., Univ. of Murcia, Espinardo, Spain
Abstract :
An important aspect to consider in applications which work with great volumes of data is that frequently these data are of low quality and also cannot be use other types of data. The field of Soft Computing has dealt, among other things, with developing techniques that will be able to work with these types of low quality data in a suitable way, respecting the true origin of these data. In this paper we present a method to carry out the imputation of missing values from information that may be of low quality when another possibility is not available. The method is based on a predictable model. The imputation method developed is incorporated into the software tool NIP increasing its functionality of imputation/replacement of low quality values.
Keywords :
data handling; pattern classification; NIP software tool; data origin; low quality data; missing value imputation method; soft computing; Covariance matrices; Data mining; Data models; Noise; Predictive models; Robustness; Uncertainty; Imputation of missing values; Low quality data; Soft Computing; software tool for Soft Computing;
Conference_Titel :
Fuzzy Systems (FUZZ), 2013 IEEE International Conference on
Conference_Location :
Hyderabad
Print_ISBN :
978-1-4799-0020-6
DOI :
10.1109/FUZZ-IEEE.2013.6622389