Title :
Localization in mobile wireless sensor networks via sequential global optimization
Author :
Nevat, Ido ; Peters, Gareth W. ; Collings, Iain B.
Author_Institution :
Wireless & Networking Tech. Lab CSIRO, Sydney, Australia
Abstract :
We develop a novel approach to source localization in mobile wireless sensor networks. Standard approaches make explicit assumptions relating to the statistical characteristics of the physical process and propagation environments which result from distributional model assumptions in a likelihood-based inference method. In contrast, we adopt an approach known in statistics as a non-parametric modeling framework which allows one to relax the number of required statistical assumptions, specifically with regard to the distributional properties of the received signal and the physical process. This is achieved via a re-formulation of the problem as a flexible non-parametric regression model via the framework of Gaussian Processes. Coupling this modeling perspective with a Bayesian optimization mechanism, we frame the global optimization objective as a sequential decision problem. We then develop an efficient algorithm to sequentially select the optimal location at which the mobile sensor should obtain observations under communication and mobility constraints. Simulation results demonstrate the efficiency of the algorithm at achieving accurate localization in a wireless sensor network.
Keywords :
Gaussian processes; Mobile communication; Optimization; Position measurement; Response surface methodology; Wireless communication; Wireless sensor networks; Gaussian processes; Kernel methods; Sensor networks; imperfect communication channels;
Conference_Titel :
Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on
Conference_Location :
London, United Kingdom
DOI :
10.1109/PIMRC.2013.6666146