Title : 
An EM-based estimation algorithm for a class of systems promoting sparsity
         
        
            Author : 
Godoy, Boris I. ; Carvajal, Rodrigo ; Aguero, Juan C.
         
        
            Author_Institution : 
Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW, Australia
         
        
        
        
        
        
            Abstract : 
In this paper we propose a Maximum a Posteriori (MAP) approach for estimating a random sparse parameter vector in the presence of nonlinearities of unknown parameters. In this Bayesian approach, the a priori probability distribution for the parameter vector is utilised as a mechanism to promote sparsity. We solve this identification problem by using a generalized Expectation Maximization algorithm in a MAP framework.
         
        
            Keywords : 
Bayes methods; expectation-maximisation algorithm; Bayesian approach; EM based estimation algorithm; Expectation Maximization Algorithm; MAP framework; maximum a posteriori approach; parameter vector; probability distribution; random sparse parameter vector; sparsity system; Bayes methods; Equations; Maximum likelihood estimation; Noise measurement; Parameter estimation; Vectors;
         
        
        
        
            Conference_Titel : 
Control Conference (ECC), 2013 European
         
        
            Conference_Location : 
Zurich