DocumentCode :
650018
Title :
A new class of discrete orthogonal polynomials for blind fitting of finite data
Author :
Gamboa-Rosales, Hamurabi ; Morales-Mendoza, Luis J. ; Shmaliy, Yuriy S.
Author_Institution :
Dept. of Electron., Univ. Autonoma de Zacatecas, Zacatecas, Mexico
fYear :
2013
fDate :
Sept. 30 2013-Oct. 4 2013
Firstpage :
185
Lastpage :
190
Abstract :
We show that the polynomial unbiased finite impulse response (UFIR) functions derived by Shmaliy establish a new class of a one-parameter family of discrete orthogonal polynomials (DOP). Unlike the classical finite-data DOP, the UFIR polynomials depend on only one parameter - the length of finite data. This makes them highly attractive for L-order blind fitting and representation of informative processes. Examples of applications are given for voice phoneme analysis and approximation in a comparison with the Hahn´s polynomials.
Keywords :
FIR filters; polynomials; DOP; L-order blind fitting; UFIR functions; UFIR polynomials; discrete orthogonal polynomials; finite data; informative process representation; one-parameter family; polynomial unbiased finite impulse response functions; voice phoneme analysis; Chebyshev approximation; Cities and towns; Electrical engineering; IEEE catalog; Noise; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Engineering, Computing Science and Automatic Control (CCE), 2013 10th International Conference on
Conference_Location :
Mexico City
Print_ISBN :
978-1-4799-1460-9
Type :
conf
DOI :
10.1109/ICEEE.2013.6676049
Filename :
6676049
Link To Document :
بازگشت