DocumentCode :
652209
Title :
On the Use of LSH for Privacy Preserving Personalization
Author :
Aghasaryan, Armen ; Bouzid, Merouane ; Kostadinov, Dimitre ; Kothari, Mangal ; Nandi, A.K.
fYear :
2013
fDate :
16-18 July 2013
Firstpage :
362
Lastpage :
371
Abstract :
The Locality Sensitive Hashing (LSH) technique of scalably finding nearest-neighbors can be adapted to enable discovering similar users while preserving their privacy. The key idea is to compute the user profile on the end-user device, apply LSH on the local profile, and use the LSH cluster identifier as the interest group identifier of a user. By properties of LSH, the interest group comprises other users with similar interests. The collective behavior of the members of the interest group is anonymously collected at some aggregation node to generate recommendations for the group members. The quality of recommendation depends on the efficiency of the LSH clustering algorithm, i.e. its capability of gathering similar users. In contrast, with conventional usage of LSH (for scalability and not privacy), in our framework one can not perform a linear search over the cluster members to identify the nearest neighbors and to prune away false positives. A good clustering quality is therefore of functional importance for our system. We report in this work how changing the nature of LSH inputs, which in our case corresponds to the user profile representations, impacts the performance of LSH-based clustering and the final quality of recommendations. We present extensive performance evaluations of the LSH-based privacypreserving recommender system using two large datasets of MovieLens ratings and Delicious bookmarks, respectively.
Keywords :
cryptography; data privacy; pattern clustering; recommender systems; Delicious bookmarks; LSH cluster identifier; LSH clustering algorithm; LSH-based privacy preserving recommender system; MovieLens ratings; aggregation node; collective behavior; end-user device; linear search; local profile; locality sensitive hashing technique; nearest-neighbor identification; privacy preserving personalization; user interest group identifier; user profile representations; Clustering algorithms; Motion pictures; Privacy; Recommender systems; Scalability; Semantics; Training; LSH; personalization; privacy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE International Conference on
Conference_Location :
Melbourne, VIC
Type :
conf
DOI :
10.1109/TrustCom.2013.46
Filename :
6680863
Link To Document :
بازگشت