Title :
Gaussian Particle Filtering Approach for Carrier Frequency Offset Estimation in OFDM Systems
Author :
Jaechan Lim ; Daehyoung Hong
Author_Institution :
Dept. of Creative IT Excellence Eng., Pohang Univ. ersity of Sci. & Technol., Pohang, South Korea
Abstract :
We propose Gaussian particle filtering (PF) approach for estimating carrier frequency offset (CFO) in OFDM systems. PF is more powerful especially for nonlinear problems where classical approaches (e.g., maximum likelihood estimators) may not show optimal performance. Standard PF undergoes the particle impoverishment (PI) problem resulting from resampling process for this static parameter (i.e., CFO) estimation. Gaussian PF (GPF) avoids the PI problem because resampling process is not needed in the algorithm. We show that GPF outperforms current approaches in this nonlinear estimation problem.
Keywords :
OFDM modulation; maximum likelihood estimation; nonlinear estimation; particle filtering (numerical methods); Gaussian particle filtering; OFDM systems; carrier frequency offset estimation; maximum likelihood estimators; nonlinear estimation problem; nonlinear problems; particle impoverishment problem; static parameter estimation; Equations; Kernel; Mathematical model; Maximum likelihood estimation; Noise; OFDM; Carrier frequency offset; Gaussian particle filtering; OFDM; particle impoverishment;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2013.2248148