• DocumentCode
    65417
  • Title

    Gaussian Particle Filtering Approach for Carrier Frequency Offset Estimation in OFDM Systems

  • Author

    Jaechan Lim ; Daehyoung Hong

  • Author_Institution
    Dept. of Creative IT Excellence Eng., Pohang Univ. ersity of Sci. & Technol., Pohang, South Korea
  • Volume
    20
  • Issue
    4
  • fYear
    2013
  • fDate
    Apr-13
  • Firstpage
    367
  • Lastpage
    370
  • Abstract
    We propose Gaussian particle filtering (PF) approach for estimating carrier frequency offset (CFO) in OFDM systems. PF is more powerful especially for nonlinear problems where classical approaches (e.g., maximum likelihood estimators) may not show optimal performance. Standard PF undergoes the particle impoverishment (PI) problem resulting from resampling process for this static parameter (i.e., CFO) estimation. Gaussian PF (GPF) avoids the PI problem because resampling process is not needed in the algorithm. We show that GPF outperforms current approaches in this nonlinear estimation problem.
  • Keywords
    OFDM modulation; maximum likelihood estimation; nonlinear estimation; particle filtering (numerical methods); Gaussian particle filtering; OFDM systems; carrier frequency offset estimation; maximum likelihood estimators; nonlinear estimation problem; nonlinear problems; particle impoverishment problem; static parameter estimation; Equations; Kernel; Mathematical model; Maximum likelihood estimation; Noise; OFDM; Carrier frequency offset; Gaussian particle filtering; OFDM; particle impoverishment;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2013.2248148
  • Filename
    6468071