Title :
Significant predictors of learning from student interactions with online learning objects
Author :
Miller, L. Dee ; Leen-Kiat Soh
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Nebraska, Lincoln, NE, USA
Abstract :
Learning objects (LOs) are self-contained, reusable units of learning. Previous research has shown that using LOs to supplement traditional lecture increases achievement and promotes success for college students in the disciplines of engineering and computer science. The computer-based nature for LOs allows for sophisticated tracking that can collect metadata about the individual learners. This tends to result in a tremendous amount of metadata collected on LOs. The challenge becomes identifying the predictors of learning. Previous research tends to be focused on a single area of metadata such as the learning strategies or demographic variables. Here we report on a comprehensive regression analysis conducted on variables in four widely different areas including LO interaction data, MSLQ survey responses (that measure learning strategies), demographic information, and LO evaluation survey data. Our analysis found that a subset of the variables in each area were actually significant predictors of learning. We also found that several static variables that appeared to be significant predictors in their own right were simply reflecting the results from student motivation. These results provide valuable insights into which variables are significant predictors. Further, they also help improve LO tracking systems allowing for the design of better online learning technologies.
Keywords :
computer aided instruction; regression analysis; LO evaluation survey data; LO interaction data; MSLQ survey responses; college student; demographic information; online learning object; predictor of learning; regression analysis; student interaction; student motivation; Educational institutions; Organizations; Problem-solving; Learning Objects; Predictors of Learning; Regression Analysis;
Conference_Titel :
Frontiers in Education Conference, 2013 IEEE
Conference_Location :
Oklahoma City, OK
DOI :
10.1109/FIE.2013.6684817