DocumentCode :
655077
Title :
Predicting Traffic in the Cloud: A Statistical Approach
Author :
Lopes Dalmazo, Bruno ; Vilela, Joao P. ; Curado, Marilia
Author_Institution :
Dept. of Inf. Eng., Univ. of Coimbra, Coimbra, Portugal
fYear :
2013
fDate :
Sept. 30 2013-Oct. 2 2013
Firstpage :
121
Lastpage :
126
Abstract :
Monitoring and managing traffic are vital elements to the operation of a network. Traffic prediction is an essential tool that captures the underlying behavior of a network and can be used, for example, to detect anomalies by defining acceptable data traffic thresholds. In this context, most current solutions are heavily based on historical time data, which makes it difficult to employ them in a dynamic environment such as cloud computing. We propose a traffic prediction approach based on a statistical model where observations are weighted with a Poisson distribution inside a sliding window. The evaluation of the proposed method is performed by assessing the Normalized Mean Square Error of predicted values over observed values from a real cloud computing dataset, collected by monitoring the utilization of Drop box. Compared with other predictors, our solution exhibits the strongest correlation level and shows a close match with real observations.
Keywords :
Poisson distribution; cloud computing; mean square error methods; statistical analysis; Dropbox; Poisson distribution; anomalies detect; cloud computing; cloud traffic prediction; data traffic thresholds; historical time data; normalized mean square error; sliding window; statistical approach; Cloud computing; Complexity theory; Correlation; Monitoring; Prediction algorithms; Time series analysis; Vectors; Dropbox; Network traffic analysis; Poisson process; network traffic prediction; sliding window;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud and Green Computing (CGC), 2013 Third International Conference on
Conference_Location :
Karlsruhe
Type :
conf
DOI :
10.1109/CGC.2013.26
Filename :
6686018
Link To Document :
بازگشت