Title :
Story Link Detection in Turkish Corpus
Author :
Kose, Guven ; Tonta, Yasar ; Ahmadlouei, Hamid ; Polatkan, Aydin Can
Author_Institution :
Dept. of Inf. Manage., Hacettepe Univ., Ankara, Turkey
Abstract :
Story Link Detection (SLD) is known as a sub-task of Topic Detection and Tracking (TDT). SLD aims to specify whether two randomly selected stories discuss the same topic or not. This sub-task drew special attention within the TDT research community as many tasks in TDT are thought to be solved automatically once SLD performs as expected. In this study, performance tests were carried out on the BilCol-2005 Turkish news corpus composed of approximately 209,000 news items using vector space model (VSM) and relevance model (RM) methods with respect to varied index term counts. Accordingly, best results obtained were as follows: the VSM method performed best with 30 terms (F-measure=0.2970) while RM method did with 4 terms (F-measure=0.1910). Furthermore, the combination of two methods using the AND and OR functions increased the precision ratio by 7.9% and recall ratio by 1.2%, respectively, indicating that retrieval performance of SLD algorithms can be increased to some extent by employing both VSM and RM models.
Keywords :
information retrieval; natural language processing; vectors; BilCol-2005 Turkish news corpus; RM models; SLD; TDT; VSM; randomly selected stories; relevance model methods; story link detection; topic detection and tracking; vector space model; Computational modeling; Event detection; Indexes; Information retrieval; Research and development; Superluminescent diodes; Vectors; relevance model; story link detection; topic detection and tracking; vector space model;
Conference_Titel :
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences on
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4799-2902-3
DOI :
10.1109/WI-IAT.2013.23