DocumentCode :
659155
Title :
Shannon entropy estimation from convergence results in the countable alphabet case
Author :
Silva, Jorge F. ; Parada, P.
Author_Institution :
Dept. of Electr. Eng., Univ. de Chile, Santiago, Chile
fYear :
2013
fDate :
9-13 Sept. 2013
Firstpage :
1
Lastpage :
5
Abstract :
In this paper new results for the Shannon entropy estimation and estimation of distributions, consistently in information divergence, are presented in the countable alphabet case. Sufficient conditions for the entropy convergence are adopted, including scenarios with both finitely and infinitely supported distributions. From this approach, new estimates, strong consistency results and rate of convergences are derived for various plug-in histogram-based schemes.
Keywords :
entropy; estimation theory; Shannon entropy estimation; countable alphabet case; entropy convergence; histogram-based scheme; information divergence; Convergence; Entropy; Estimation; Limiting; Loss measurement; Mutual information;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop (ITW), 2013 IEEE
Conference_Location :
Sevilla
Print_ISBN :
978-1-4799-1321-3
Type :
conf
DOI :
10.1109/ITW.2013.6691278
Filename :
6691278
Link To Document :
بازگشت