DocumentCode
659166
Title
On Semi-Probabilistic universal prediction
Author
Rakhlin, Alexander ; Sridharan, K.
Author_Institution
Dept. of Stat., Univ. of Pennsylvania, Philadelphia, PA, USA
fYear
2013
fDate
9-13 Sept. 2013
Firstpage
1
Lastpage
5
Abstract
We discuss two scenarios of universal prediction, as well as some recent advances in the study of minimax regret and algorithmic development. We then propose an intermediate scenario, the Semi-Probabilistic Setting, and make progress towards understanding the associated minimax regret.
Keywords
minimax techniques; probability; algorithmic development; minimax regret; semiprobabilistic universal prediction; Complexity theory; Loss measurement; Prediction algorithms; Prediction methods; Probabilistic logic; Statistical learning; Upper bound;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory Workshop (ITW), 2013 IEEE
Conference_Location
Sevilla
Print_ISBN
978-1-4799-1321-3
Type
conf
DOI
10.1109/ITW.2013.6691289
Filename
6691289
Link To Document