Title :
One-shot bounds for various information theoretic problems using smooth min and max Rényi divergences
Author :
Warsi, Naqueeb Ahmad
Author_Institution :
Tata Inst. of Fundamental Res., Mumbai, India
Abstract :
One-shot analogues for various information theory results known in the asymptotic case are proven using smooth min and max Rényi divergences. In particular, we prove that smooth min Rényi divergence can be used to prove one-shot analogue of the Stein´s lemma. Using smooth min Rényi divergence we prove a special case of packing lemma in the one-shot setting. Furthermore, we prove a one-shot analogue of covering lemma using smooth max Rényi divergence. We also propose one-shot achievable rate for source coding under maximum distortion criterion. This achievable rate is quantified in terms of smooth max Rényi divergence.
Keywords :
source coding; Stein´s lemma; information theoretic problem; maximum distortion criterion; one-shot bounds analogue; packing lemma case; smooth max Rényi divergence; smooth min Rényi divergence; source coding; Atmospheric measurements; Channel coding; Extraterrestrial measurements; Q measurement; Random variables; Source coding;
Conference_Titel :
Information Theory Workshop (ITW), 2013 IEEE
Conference_Location :
Sevilla
Print_ISBN :
978-1-4799-1321-3
DOI :
10.1109/ITW.2013.6691300