DocumentCode :
659207
Title :
Two-partition-symmetrical entropy function regions
Author :
Qi Chen ; Yeung, Raymond W.
Author_Institution :
Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
fYear :
2013
fDate :
9-13 Sept. 2013
Firstpage :
1
Lastpage :
5
Abstract :
Consider the entropy function region for discrete random variables Xi, i ϵ N and partition N into N1 and N2 with 0 ≤ |N1| ≤ |N2|. An entropy function h is called (N1, N2)-symmetrical if for all A, B ⊂ N, h(A) = h(B) whenever |A ∩ N1| = |B ∩N1|, i = 1,2. We prove that for |N1| = 0 or 1, the closure of the (N1, N2)-symmetrical entropy function region is completely characterized by Shannon-type information inequalities. Applications of this work include threshold secret sharing and distributed data storage, where symmetry exists in the structure of the problem.
Keywords :
entropy; random functions; vectors; Shannon-type information inequalities; discrete random variables; distributed data storage; random vector; threshold secret sharing; two-partition-symmetrical entropy function regions; Cramer-Rao bounds; Cryptography; Entropy; Face; Random variables; Tin; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop (ITW), 2013 IEEE
Conference_Location :
Sevilla
Print_ISBN :
978-1-4799-1321-3
Type :
conf
DOI :
10.1109/ITW.2013.6691330
Filename :
6691330
Link To Document :
بازگشت