Title :
Semantic Computing of Moods Based on Tags in Social Media of Music
Author :
Saari, Pasi ; Eerola, Tuomas
Author_Institution :
Dept. of Music, Univ. of Jyvaskyla, Jyvaskyla, Finland
Abstract :
Social tags inherent in online music services such as Last.fm provide a rich source of information on musical moods. The abundance of social tags makes this data highly beneficial for developing techniques to manage and retrieve mood information, and enables study of the relationships between music content and mood representations with data substantially larger than that available for conventional emotion research. However, no systematic assessment has been done on the accuracy of social tags and derived semantic models at capturing mood information in music. We propose a novel technique called Affective Circumplex Transformation (ACT) for representing the moods of music tracks in an interpretable and robust fashion based on semantic computing of social tags and research in emotion modeling. We validate the technique by predicting listener ratings of moods in music tracks, and compare the results to prediction with the Vector Space Model (VSM), Singular Value Decomposition (SVD), Nonnegative Matrix Factorization (NMF), and Probabilistic Latent Semantic Analysis (PLSA). The results show that ACT consistently outperforms the baseline techniques, and its performance is robust against a low number of track-level mood tags. The results give validity and analytical insights for harnessing millions of music tracks and associated mood data available through social tags in application development.
Keywords :
information management; information retrieval; music; social networking (online); ACT; NMF; PLSA; SVD; VSM; affective circumplex transformation; conventional emotion research; emotion modeling; mood information management; mood information retrieval; mood representations; music content; musical moods; nonnegative matrix factorization; online music services; probabilistic latent semantic analysis; semantic computing; semantic models; singular value decomposition; social media; social tags; track-level mood tags; vector space model; Analytical models; Computational modeling; Mood; Music; Semantics; Vectors; Vocabulary; Affective Computing; Artificial Intelligence; Computing Methodology; Content Analysis and Indexing; Intelligent Web Services and Semantic Web; Modeling human emotion; Modeling structured; Multimedia databases; Ontology design; Semantic analysis; Sound and Music Computing; Web mining; genres; moods; music; music information retrieval; prediction; social tags; textual and multimedia data;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
DOI :
10.1109/TKDE.2013.128