DocumentCode :
663510
Title :
Learning an internal representation of the end-effector configuration space
Author :
Laflaquiere, Alban ; Terekhov, Alexander V. ; Gas, B. ; O´Regan, J. Kevin
Author_Institution :
ISIR, UPMC Univ. Paris 06, Paris, France
fYear :
2013
fDate :
3-7 Nov. 2013
Firstpage :
1230
Lastpage :
1235
Abstract :
Current machine learning techniques proposed to automatically discover a robot´s kinematics usually rely on a priori information about the robot´s structure, sensor properties or end-effector position. This paper proposes a method to estimate a certain aspect of the forward kinematics model with no such information. An internal representation of the end-effector configuration is generated from unstructured proprioceptive and exteroceptive data flow under very limited assumptions. A mapping from the proprioceptive space to this representational space can then be used to control the robot.
Keywords :
end effectors; learning (artificial intelligence); manipulator kinematics; end-effector configuration space; end-effector position; exteroceptive data flow; forward kinematic model; internal representation; machine learning techniques; robot kinematics; robot structure; sensor property; unstructured proprioceptive data flow; Cameras; Jacobian matrices; Retina; Robot vision systems; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on
Conference_Location :
Tokyo
ISSN :
2153-0858
Type :
conf
DOI :
10.1109/IROS.2013.6696507
Filename :
6696507
Link To Document :
بازگشت