DocumentCode
66745
Title
VLSI Compatible Parallel Fabrication of Scalable Few Electron Silicon Quantum Dots
Author
Lin, Yun P. ; Perez-Barraza, Julia I. ; Husain, Muhammad K. ; Alkhalil, Feras M. ; Lambert, Nicholas ; Williams, David A. ; Ferguson, A.J. ; Chong, H.M.H. ; Mizuta, Hiroshi
Author_Institution
Fac. of Phys. & Appl. Sci., Univ. of Southampton, Southampton, UK
Volume
12
Issue
6
fYear
2013
fDate
Nov. 2013
Firstpage
897
Lastpage
901
Abstract
One-hundred ninety-two highly tuneable high density lithographically defined Si dual double quantum dots (DQDs) are fabricated for the first time in parallel via a scalable VLSI compatible fabrication process for the realization of single electron qubits for quantum computing. 25 nm DQDs with less than 5 nm in dimensional variation are achieved via the use of Hydrogen silsesquioxane resist and electron beam lithography. Repeatable coulomb oscillations and coulomb diamonds signifying single electron tunnelling are observed in the electrical characteristics of a Si DQD structure. This demonstrates the viability and dimensionality of our system and paves the way for single electron spin manipulation in scalable Si-based systems.
Keywords
VLSI; diamond; electron resists; elemental semiconductors; quantum computing; semiconductor quantum dots; silicon; silicon-on-insulator; tunnelling; DQD structure; Si; VLSI compatible parallel fabrication; coulomb diamonds; dimensional variation; dual double quantum dots; electrical characteristics; electron beam lithography; electron silicon quantum dots; electron spin manipulation; hydrogen silsesquioxane resist; quantum computing; repeatable coulomb oscillations; scalable VLSI compatible fabrication process; silicon-on-insulator; single electron qubits; single electron tunnelling; size 25 nm; system dimensionality; system viability; Coulomb blockade; SET; Si Quantum dots; fabrication; hydrogen sil-sesquioxane (HSQ); silicon-on-insulator (SOI);
fLanguage
English
Journal_Title
Nanotechnology, IEEE Transactions on
Publisher
ieee
ISSN
1536-125X
Type
jour
DOI
10.1109/TNANO.2013.2263964
Filename
6517260
Link To Document