DocumentCode :
669825
Title :
Unsupervised structuring element estimation of morphological opening and closing with GA
Author :
Nabetani, Yoichi ; Muneyasu, Mitsuji ; Asano, Akira
Author_Institution :
Grad. Sch. of Sci. & Eng., Kansai Univ., Suita, Japan
fYear :
2013
fDate :
12-15 Nov. 2013
Firstpage :
297
Lastpage :
302
Abstract :
In this paper, we propose an unsupervised design method for optimal structuring element (SE) of morphological filters. We formulate the design of SE as an optimization problem, and estimate an optimal shape and brightness of SE directly from degraded images. We estimated an optimal shape and brightness by using a Genetic Algorithm (GA). Estimation of SE that can remove noise while preserving original signals is achieved by objective function that use Rank-Ordered Logarithmic Differences (ROLD) statistic for the impulse noise detection.
Keywords :
genetic algorithms; image texture; unsupervised learning; ROLD statistic; genetic algorithm; image texture; impulse noise detection; morphological filters; optimization problem; rank-ordered logarithmic differences statistic; unsupervised structuring element estimation; Brightness; Estimation; Genetic algorithms; Linear programming; Noise; Noise measurement; Shape; ROLD; genetic algorithm; mathematical morphology; opening; structuring element;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Signal Processing and Communications Systems (ISPACS), 2013 International Symposium on
Conference_Location :
Naha
Print_ISBN :
978-1-4673-6360-0
Type :
conf
DOI :
10.1109/ISPACS.2013.6704564
Filename :
6704564
Link To Document :
بازگشت