DocumentCode :
671064
Title :
Recognizing human actions based on Sparse Coding with Non-negative and Locality constraints
Author :
Yuanbo Chen ; Yanyun Zhao ; Anni Cai
Author_Institution :
Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2013
fDate :
17-20 Nov. 2013
Firstpage :
1
Lastpage :
6
Abstract :
In this paper, Sparse Coding with Non-negative and Locality constraints (SCNL) is proposed to generate discriminative feature descriptions for human action recognition. The non-negative constraint ensures that every data sample is in the convex hull of its neighbors. The locality constraint makes a data sample only represented by its related neighbor atoms. The sparsity constraint confines the dictionary atoms involved in the sample representation as fewer as possible. The SCNL model can better capture the global subspace structures of data than classical sparse coding, and are more robust to noise compared to locality-constrained linear coding. Extensive experiments testify the significant advantages of the proposed SCNL model through evaluations on three remarkable human action datasets.
Keywords :
convex programming; feature extraction; image coding; nonlinear codes; convex hull; data sample; discriminative feature descriptions; global subspace structures; human action recognition; locality constrained linear coding; sample representation; sparse coding with nonnegative and locality constraints; Cameras; Dictionaries; Encoding; Noise; Optimization; Vectors; Videos; Human action recognition; SCNL model; datum-adaptive; locality; sparse;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visual Communications and Image Processing (VCIP), 2013
Conference_Location :
Kuching
Print_ISBN :
978-1-4799-0288-0
Type :
conf
DOI :
10.1109/VCIP.2013.6706359
Filename :
6706359
Link To Document :
بازگشت