DocumentCode :
671400
Title :
Neuro-fuzzy fitness in a genetic algorithm for optimal fuzzy controller design
Author :
Castillo, Oscar ; Melendez, Anamaris ; Melin, Patricia ; Astudillo, Leslie
Author_Institution :
Tijuana Inst. of Technol., Tijuana, Mexico
fYear :
2013
fDate :
4-9 Aug. 2013
Firstpage :
1
Lastpage :
5
Abstract :
This paper describes an evolutionary genetic algorithm approach for the optimization of a fuzzy reactive controller applied to the design of a fuzzy controller for a mobile robot. The algorithm will optimize the fuzzy inference system evaluating the performance of each individual with a neuro-fuzzy fitness function that considers the robots covered distance, time used, battery life and the pattern of the trajectory.
Keywords :
control system synthesis; fuzzy control; fuzzy neural nets; fuzzy reasoning; genetic algorithms; mobile robots; neurocontrollers; optimal control; battery life; evolutionary genetic algorithm approach; fuzzy inference system; fuzzy reactive controller optimization; mobile robot; neurofuzzy fitness function; optimal fuzzy controller design; performance evaluation; trajectory pattern; Fuzzy logic; Genetic algorithms; Mobile robots; Robot kinematics; Robot sensing systems; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2013 International Joint Conference on
Conference_Location :
Dallas, TX
ISSN :
2161-4393
Print_ISBN :
978-1-4673-6128-6
Type :
conf
DOI :
10.1109/IJCNN.2013.6706739
Filename :
6706739
Link To Document :
بازگشت