DocumentCode :
671446
Title :
Real-time decentralized inverse optimal neural control for a Shrimp robot
Author :
Lopez-Franco, Michel ; Sanchez, Edgar N. ; Alanis, Alma Y. ; Arana-Daniel, Nancy
Author_Institution :
CINVESTAV, Guadalajara, Mexico
fYear :
2013
fDate :
4-9 Aug. 2013
Firstpage :
1
Lastpage :
7
Abstract :
This paper deals with a decentralized inverse optimal neural controller for MIMO discrete-time unknown nonlinear systems, in a presence of external disturbances and parameter uncertainties. It uses two techniques: first, an identifier based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm; second, on the basis of the real identifier a controller which uses inverse optimal control, is designed to avoid solving the Hamilton Jacobi Bellman (HJB) equation. The proposed scheme is implemented in real-time to control a Shrimp robot.
Keywords :
Kalman filters; MIMO systems; decentralised control; discrete time systems; identification; mobile robots; neurocontrollers; nonlinear control systems; nonlinear filters; optimal control; recurrent neural nets; EKF algorithm; MIMO discrete-time unknown nonlinear systems; RHONN; discrete-time recurrent high order neural network; extended Kalman filter algorithm; external disturbances; identifier; parameter uncertainties; real-time decentralized inverse optimal neural control; shrimp robot; Equations; Mobile robots; Neural networks; Optimal control; Trajectory; Vectors; Decentralized Inverse Optimal Neural Control; Mobile Robots; Neural Control; Neural identifier; Recurrent High Order Neural Networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2013 International Joint Conference on
Conference_Location :
Dallas, TX
ISSN :
2161-4393
Print_ISBN :
978-1-4673-6128-6
Type :
conf
DOI :
10.1109/IJCNN.2013.6706785
Filename :
6706785
Link To Document :
بازگشت