DocumentCode :
672344
Title :
Automatic model complexity control for generalized variable parameter HMMs
Author :
Rongfeng Su ; Xunying Liu ; Lan Wang
Author_Institution :
Shenzhen Inst. of Adv. Technol., Shenzhen, China
fYear :
2013
fDate :
8-12 Dec. 2013
Firstpage :
150
Lastpage :
155
Abstract :
An important task for speech recognition systems is to handle the mismatch against a target environment introduced by acoustic factors such as variable ambient noise. To address this issue, it is possible to explicitly approximate the continuous trajectory of optimal, well matched model parameters against the varying noise using, for example, using generalized variable parameter HMMs (GVP-HMM). In order to improve the generalization and computational efficiency of conventional GVP-HMMs, this paper investigates a novel model complexity control method for GVP-HMMs. The optimal polynomial degrees of Gaussian mean, variance and model space linear transform trajectories are automatically determined at local level. Significant error rate reductions of 20% and 28% relative were obtained over the multi-style training baseline systems on Aurora 2 and a medium vocabulary Mandarin Chinese speech recognition task respectively. Consistent performance improvements and model size compression of 57% relative were also obtained over the baseline GVP-HMM systems using a uniformly assigned polynomial degree.
Keywords :
acoustic signal processing; computational complexity; error statistics; hidden Markov models; natural language processing; speech recognition; Aurora 2; GVP-HMM; Gaussian mean; acoustic factors; automatic model complexity control; complexity control method; computational efficiency; continuous trajectory; error rate reductions; generalized variable parameter HMM; medium vocabulary Mandarin Chinese speech recognition; model space linear transform trajectory; multistyle training baseline systems; optimal polynomial degrees; speech recognition systems; target environment; variable ambient noise; well matched model parameters; Complexity theory; Hidden Markov models; Mathematical model; Noise; Polynomials; Trajectory; Transforms; generalized variable parameter HMM; model complexity control; robust speech recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on
Conference_Location :
Olomouc
Type :
conf
DOI :
10.1109/ASRU.2013.6707721
Filename :
6707721
Link To Document :
بازگشت