Title :
Robust Decoding for Convolutionally Coded Systems Impaired by Memoryless Impulsive Noise
Author :
Der-Feng Tseng ; Han, Yunghsiang S. ; Wai Ho Mow ; Po-Ning Chen ; Jing Deng ; Vinck, A. J. Han
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Tech., Taipei, Taiwan
Abstract :
It is well known that communication systems are susceptible to strong impulsive noises. To combat this, convolutional coding has long served as a cost-efficient tool against moderately frequent memoryless impulses with given statistics. Nevertheless, impulsive noise statistics are difficult to model accurately and are typically not time-invariant, making the system design challenging. In this paper, because of the lack of knowledge regarding the probability density function of impulsive noises, an efficient decoding scheme was devised for single-carrier narrowband communication systems; a design parameter was incorporated into recently introduced joint erasure marking and Viterbi decoding algorithm, dubbed the metric erasure Viterbi algorithm (MEVA). The proposed scheme involves incorporating a well-designed clipping operation into a Viterbi algorithm, in which the clipping threshold must be appropriately set. In contrast to previous publications that have resorted to extensive simulations, in the proposed scheme, the bit error probability performance associated with the clipping threshold was characterized by deriving its Chernoff bound. The results indicated that when the clipping threshold was judiciously selected, the MEVA can be on par with its optimal maximum-likelihood decoding counterpart under fairly general circumstances.
Keywords :
convolutional codes; decoding; Chernoff bound; MEVA; Viterbi decoding algorithm; bit error probability performance; clipping threshold; convolutional coding; convolutionally coded systems; cost efficient tool; frequent memoryless impulse; impulsive noise statistics; joint erasure marking; memoryless impulsive noise; metric erasure Viterbi algorithm; optimal maximum likelihood decoding; probability density function; robust decoding; single carrier narrowband communication systems; system design challenging; Convolutional codes; Maximum likelihood decoding; Measurement; Noise; Robustness; Viterbi algorithm; Bernoulli-Gaussian channel; Impulsive noise; Middleton Class-A model; metric erasure Viterbi Algorithm (MEVA); power line communications;
Journal_Title :
Communications, IEEE Transactions on
DOI :
10.1109/TCOMM.2013.101813.130122