DocumentCode :
673063
Title :
On interval edge-colorings of complete tripartite graphs
Author :
Grzesik, Andrzej ; Khachatrian, Hrant
Author_Institution :
Jagiellonian Univ., Krakow, Poland
fYear :
2013
fDate :
23-27 Sept. 2013
Firstpage :
1
Lastpage :
3
Abstract :
An edge-coloring of a graph G with colors 1, ..., t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. In this paper we prove that K1, m, n is interval colorable if and only if gcd(m+1, n + 1) = 1, where gcd(m+1, n+1) is the greatest common divisor of m+1 and n + 1.
Keywords :
graph colouring; complete tripartite graphs; edge colors; graph vertex; greatest common divisor; interval colorable graph; interval edge-colorings; interval t-coloring; positive integer; Bipartite graph; Color; Conferences; Educational institutions; Materials; Upper bound; Edge-coloring; complete multipartite graph; complete tripartite graph; interval edge-coloring;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Technologies (CSIT), 2013
Conference_Location :
Yerevan
Print_ISBN :
978-1-4799-2460-8
Type :
conf
DOI :
10.1109/CSITechnol.2013.6710340
Filename :
6710340
Link To Document :
بازگشت