DocumentCode :
673067
Title :
Reconstruction of quantum information after the measurement
Author :
Poghosyan, Sergey ; Cheon, Taksu
Author_Institution :
Lab. of Phys., Kochi Univ. of Technol., Kochi, Japan
fYear :
2013
fDate :
23-27 Sept. 2013
Firstpage :
1
Lastpage :
5
Abstract :
We consider a weak value expansion of the Hermitian operator in terms of a set of operators formed from biorthogonal basis. The utility of the expansion is showcased with examples of spin one-half and spin one systems, where irreversible subset of stochastic matrices describing projective measurement on a mixed state is identified.
Keywords :
Hermitian matrices; mathematical operators; quantum theory; stochastic processes; Hermitian operator; biorthogonal basis; irreversible subset; mixed state; projective measurement; quantum information reconstruction; spin one systems; spin one-half systems; stochastic matrices; weak value expansion; Atmospheric measurements; Equations; Optical variables measurement; Particle measurements; Protocols; Quantum entanglement; Birkhoff´s polytope; Quantum measurement; bis-tochachastic matrices; weak values;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Technologies (CSIT), 2013
Conference_Location :
Yerevan
Print_ISBN :
978-1-4799-2460-8
Type :
conf
DOI :
10.1109/CSITechnol.2013.6710344
Filename :
6710344
Link To Document :
بازگشت