DocumentCode :
674854
Title :
Toward Optimal Parameter Selection for the Multi-layer Perceptron Artificial Neural Network
Author :
Vergara Bahena, Andres ; Mejia-Lavalle, Manuel ; Ruiz Ascencio, Jose
Author_Institution :
Centro Nac. de Investig. y Desarrollo Tecnol. CENIDET, Cuernavaca, Mexico
fYear :
2013
fDate :
19-22 Nov. 2013
Firstpage :
103
Lastpage :
108
Abstract :
In this paper we address the problem of optimal parameter selection for a Multilayer Perceptron by means of a neural network with only one hidden layer that uses the "back propagation" algorithm over relatively simple classification problems in two dimensions (input patterns with only two variables). We will show graphically the direct relation existing between the increasing complexity regions (classes) and the necessity to add more neurons in the hidden layer. At the end, we summarize our findings by means of parameter selection recommendations in order to avoid the tedious and blind "trial and error" method.
Keywords :
backpropagation; computational complexity; multilayer perceptrons; pattern classification; back propagation algorithm; classification problems; complexity regions; hidden layer; multilayer perceptron artificial neural network; optimal parameter selection recommendations; Abstracts; Artificial neural networks; Classification algorithms; Convergence; Multilayer perceptrons; Neurons; Support vector machine classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2013 International Conference on
Conference_Location :
Morelos
Print_ISBN :
978-1-4799-2252-9
Type :
conf
DOI :
10.1109/ICMEAE.2013.45
Filename :
6713963
Link To Document :
بازگشت