DocumentCode :
675002
Title :
Fuzzy Hyperheuristic Framework for GA Parameters Tuning
Author :
Gudino-Penaloza, Fernando ; Gonzalez-Mendoza, Miguel ; Mora-Vargas, Jaime ; Hernandez-Gress, Neil
Author_Institution :
CEM, Intell. Syst. Res. Group, ITESM, Atizapan de Zaragoza, Mexico
fYear :
2013
fDate :
24-30 Nov. 2013
Firstpage :
53
Lastpage :
58
Abstract :
A fuzzy based hyperheuristic system is used for Genetic Algorithm self adaption. A fuzzy Takagi-Sugeno Inference System is used as High level Heuristic and the GA is used as Low-level heuristic. The framework allows to the system to automatically adjust their own parameters without the need for manual adjustment. The fuzzy system to handle uncertainty about which or in what proportion should adjust the parameters.
Keywords :
fuzzy reasoning; genetic algorithms; heuristic programming; uncertainty handling; GA parameters tuning; automatic parameters adjustment; fuzzy Takagi-Sugeno inference system; fuzzy hyperheuristic system; genetic algorithm; high level heuristic; low level heuristic; uncertainty handling; Fuzzy logic; Genetic algorithms; Genetics; Optimization; Pattern recognition; Sociology; Statistics; Self Adaptive GA; Parameters Tuning; Fuzzy System; Hyperheuristic Framework;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Artificial Intelligence (MICAI), 2013 12th Mexican International Conference on
Conference_Location :
Mexico City
Print_ISBN :
978-1-4799-2604-6
Type :
conf
DOI :
10.1109/MICAI.2013.48
Filename :
6714647
Link To Document :
بازگشت