DocumentCode :
679544
Title :
A Feature-Enhanced Ranking-Based Classifier for Multimodal Data and Heterogeneous Information Networks
Author :
Chen, Scott Deeann ; Ying-Yu Chen ; Jiawei Han ; Moulin, Philippe
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fYear :
2013
fDate :
7-10 Dec. 2013
Firstpage :
997
Lastpage :
1002
Abstract :
We propose a heterogeneous information network mining algorithm: feature-enhanced Rank Class (F-Rank Class). F-Rank Class extends Rank Class to a unified classification framework that can be applied to binary or multiclass classification of unimodal or multimodal data. We experimented on a multimodal document dataset, 2008/9 Wikipedia Selection for Schools. For unimodal classification, F-Rank Class is compared to support vector machines (SVMs). F-Rank Class provides improvements up to 27.3% on the Wikipedia dataset. For multimodal document classification, F-Rank Class shows improvements up to 19.7% in accuracy when compared to SVM-based meta-classifiers. We also study 1) how the structure of the network and 2) how the choice of parameters affect the classification results.
Keywords :
Web sites; data mining; document handling; pattern classification; F-RankClass; Wikipedia dataset; binary classification; feature-enhanced ranking-based classifier; heterogeneous information network mining algorithm; multiclass classification; multimodal data; multimodal document classification; multimodal document dataset; unified classification framework; unimodal data; Accuracy; Data mining; Educational institutions; Encyclopedias; Feature extraction; Image edge detection; Support vector machines; classification; heterogeneous information network; multimodal; ranking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining (ICDM), 2013 IEEE 13th International Conference on
Conference_Location :
Dallas, TX
ISSN :
1550-4786
Type :
conf
DOI :
10.1109/ICDM.2013.71
Filename :
6729588
Link To Document :
بازگشت