• DocumentCode
    683704
  • Title

    The Hilbert Boundary Value Problem for 2-Monogenic Functions in the Unit Ball

  • Author

    Si Zhongwei

  • Author_Institution
    Sch. of Math. & Inf. Sci., Leshan Normal Univ., Leshan, China
  • fYear
    2013
  • fDate
    14-15 Dec. 2013
  • Firstpage
    803
  • Lastpage
    806
  • Abstract
    Let R0,n be the real Clifford algebra generated by vectors ei for i=1, 2, ⋯, n, where ei2=-1 and eiej+ejei=0 if i ≠ j, i, j=1, 2, ⋯, n. e0 is the unit element. In this article, the Hilbert Boundary Value Problem for 2-monogenic functions in the unit ball is investigated.
  • Keywords
    Hilbert spaces; boundary-value problems; functions; vectors; 2-monogenic functions; Hilbert boundary value problem; real Clifford algebra; unit ball; unit element; Algebra; Boundary value problems; Educational institutions; Equations; Harmonic analysis; Silicon; 2-monogenic function; Hilbert Boundary Value Problem; the unit ball;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence and Security (CIS), 2013 9th International Conference on
  • Conference_Location
    Leshan
  • Print_ISBN
    978-1-4799-2548-3
  • Type

    conf

  • DOI
    10.1109/CIS.2013.175
  • Filename
    6746543