DocumentCode
683704
Title
The Hilbert Boundary Value Problem for 2-Monogenic Functions in the Unit Ball
Author
Si Zhongwei
Author_Institution
Sch. of Math. & Inf. Sci., Leshan Normal Univ., Leshan, China
fYear
2013
fDate
14-15 Dec. 2013
Firstpage
803
Lastpage
806
Abstract
Let R0,n be the real Clifford algebra generated by vectors ei for i=1, 2, ⋯, n, where ei2=-1 and eiej+ejei=0 if i ≠ j, i, j=1, 2, ⋯, n. e0 is the unit element. In this article, the Hilbert Boundary Value Problem for 2-monogenic functions in the unit ball is investigated.
Keywords
Hilbert spaces; boundary-value problems; functions; vectors; 2-monogenic functions; Hilbert boundary value problem; real Clifford algebra; unit ball; unit element; Algebra; Boundary value problems; Educational institutions; Equations; Harmonic analysis; Silicon; 2-monogenic function; Hilbert Boundary Value Problem; the unit ball;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Intelligence and Security (CIS), 2013 9th International Conference on
Conference_Location
Leshan
Print_ISBN
978-1-4799-2548-3
Type
conf
DOI
10.1109/CIS.2013.175
Filename
6746543
Link To Document