DocumentCode :
684260
Title :
Displacement prediction of landslide based on PSOGSA-ELM with mixed kernel
Author :
Cheng Lian ; Zhigang Zeng ; Wei Yao ; Huiming Tang
Author_Institution :
Sch. of Autom., Huazhong Univ. of Sci. & Technol., Wuhan, China
fYear :
2013
fDate :
19-21 Oct. 2013
Firstpage :
52
Lastpage :
57
Abstract :
The prediction of landslide displacement is essential for carrying out to improve the disaster warning system and reduce casualties and property losses. This study applies a novel neural network technique, extreme learning machine (ELM) with kernel function, to landslide displacement prediction problem. However, the generalization performance of ELM with kernel function depends closely on the kernel types and the kernel parameters. In this paper, we use a convex combination of Gaussian kernel function and polynomial kernel function in ELM, which may use these two types of kernel functions´ advantages. In order to avoid blindness and inaccuracy in parameter selection, a novel hybrid optimization algorithm based on the combination of Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) is used to optimize the regularization parameter C, the Gaussian kernel parameter γ, the polynomial kernel parameter q and the mixing weight coefficient η. The performance of our model is verified through two case studies in Baishuihe landslide and Yuhuangge landslide.
Keywords :
Gaussian processes; alarm systems; convex programming; disasters; geomorphology; geophysics computing; learning (artificial intelligence); particle swarm optimisation; search problems; Baishuihe landslide; Gaussian kernel function; Gaussian kernel parameter; PSOGSA-ELM; Yuhuangge landslide; blindness; convex combination; disaster warning system; extreme learning machine; generalization performance; gravitational search algorithm; hybrid optimization algorithm; kernel function advantage; kernel parameters; landslide displacement prediction problem; mixed kernel; mixing weight coefficient; neural network technique; parameter selection; particle swarm optimization; polynomial kernel function; polynomial kernel parameter; property losses; regularization parameter; Hazards; Kernel; Optimization; Reservoirs; Support vector machines; Terrain factors; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computational Intelligence (ICACI), 2013 Sixth International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4673-6341-9
Type :
conf
DOI :
10.1109/ICACI.2013.6748473
Filename :
6748473
Link To Document :
بازگشت