DocumentCode :
686255
Title :
3D Point Clouds Segmentation for Autonomous Ground Vehicle
Author :
Habermann, Danilo ; Hata, Alberto ; Wolf, Denis ; Osorio, Fernando Santos
Author_Institution :
Mobile Robot. Lab. - LRM/ICMC, Univ. of Sao Paulo, Sao Carlos, Brazil
fYear :
2013
fDate :
4-8 Dec. 2013
Firstpage :
143
Lastpage :
148
Abstract :
Point clouds segmentation is an essential step to improve the performance of obstacle detection and classification in areas of autonomous ground vehicles and mobile robotics. This paper presents a study and comparison of the performance of segmentation methods using point clouds coming from a 3D laser sensor, more specifically obtained from a Velodyne HDL32.
Keywords :
collision avoidance; control engineering computing; mobile robots; optical sensors; telerobotics; 3D laser sensor; 3D point clouds segmentation; Velodyne HDL32; autonomous ground vehicle; mobile robotics; obstacle detection; segmentation methods; Image segmentation; Land vehicles; Laser radar; Lasers; Robot sensing systems; Three-dimensional displays; 3D Lidar; autonomous ground vehicle; point clouds segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing Systems Engineering (SBESC), 2013 III Brazilian Symposium on
Conference_Location :
Niteroi
Type :
conf
DOI :
10.1109/SBESC.2013.43
Filename :
6825357
Link To Document :
بازگشت