DocumentCode :
687950
Title :
Cognitive radio spectrum prediction using dictionary learning
Author :
Seung-Jun Kim ; Giannakis, Georgios
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
fYear :
2013
fDate :
9-13 Dec. 2013
Firstpage :
3206
Lastpage :
3211
Abstract :
Spatio-temporal spectrum prediction algorithms for cognitive radios (CRs) are developed using the framework of dictionary learning and compressive sensing. The interference power levels at each CR node locations are predicted using the measurements from a subset of CR nodes without a priori knowledge on the primary transmitters. Batch and online alternatives are presented, where the online algorithm features low complexity and memory requirements. Numerical tests verify the performance of the proposed novel methods.
Keywords :
cognitive radio; compressed sensing; CR node locations; cognitive radio spectrum prediction; compressive sensing; dictionary learning; primary transmitters; spatio-temporal spectrum prediction algorithms; Energy measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Global Communications Conference (GLOBECOM), 2013 IEEE
Conference_Location :
Atlanta, GA
Type :
conf
DOI :
10.1109/GLOCOM.2013.6831565
Filename :
6831565
Link To Document :
بازگشت