Title :
Performance analysis of primary and secondary users in a cognitive multiple-access channel
Author :
Ozcan, Gozde ; Gursoy, M. Cenk
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
Abstract :
In this paper, we consider a cognitive multiple access channel (MAC) in which the secondary users seek to communicate with the secondary base station in a spectrum-sharing environment. The base station selects only one secondary user, which maximizes the weighted difference between the channel power gains of the interference link and the cognitive transmission link. This selection strategy can also be specialized to selecting the secondary user that has either the least interference channel gain or the highest data channel gain. Consequently, the selected secondary user is subject to an interference power constraint in order to avoid harmful interference inflicted on the primary user. It is assumed that the primary user and secondary users operate under statistical quality of service (QoS) constraints imposed as limitations on the buffer size. In this setting, we characterize the effective capacity for both primary user and the secondary users under different selection methods. The impacts of the secondary user selection method, the number of secondary users, QoS constraints on the performance of both the primary user and secondary users are investigated. We interestingly show that for a large number of secondary users, the performance of the primary user is not affected by the selection method in the interference-limited regime.
Keywords :
access protocols; cognitive radio; quality of service; radio spectrum management; radiofrequency interference; MAC; QoS; channel power gains; cognitive multiple access channel; cognitive transmission link; interference link; interference power constraint; least interference channel gain; performance analysis; primary users; quality of service; secondary base station; secondary users; spectrum sharing environment; Interference channels; Quality of service; Radio transmitters; Receivers; Wireless communication; Cognitive radio; QoS constraints; effective capacity; multiple access channel; secondary user selection; spectrum sharing;
Conference_Titel :
Global Communications Conference (GLOBECOM), 2013 IEEE
Conference_Location :
Atlanta, GA
DOI :
10.1109/GLOCOM.2013.6831662