Title :
Based on RBF Neural Network Gasoline Transient Conditions Oil Film Parameter of Gasoline Engine Soft Predicted Measurements Research
Author :
Li Yuelin ; Peng Ling ; Yang Wei ; Ding Jingfeng
Author_Institution :
Changsha Univ. of Sci. & Technol., Changsha, China
Abstract :
It is too difficult to determin oil film parameter in the case of transient conditions, but this paper presents a method, Chaos Radial Basis Function (RBF) neural network gasoline engine transient conditions the film parameter identification method. It shows the chaotic RBF neural network model has stronger nonlinear identification capability,this model can improve the identification accuracy of oil film parameter dynamic effectively, And then come to the oil film parameter dynamic characteristics of the different conditions.
Keywords :
internal combustion engines; mechanical engineering computing; parameter estimation; radial basis function networks; RBF neural network; chaos radial basis function network; film parameter identification method; gasoline engine; gasoline transient conditions; oil film parameter dynamic characteristics; Calibration; Chaos; Engines; Films; Fuels; Mathematical model; Neural networks; Development of EPC; EPC applicable conditions; EPC characteristics;
Conference_Titel :
Intelligent Systems Design and Engineering Applications, 2013 Fourth International Conference on
Conference_Location :
Zhangjiajie
Print_ISBN :
978-1-4799-2791-3
DOI :
10.1109/ISDEA.2013.447